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​ABSTRACT

In this study, we investigate the application of a non-autoregressive Transformer
encoder-based model, MusicBERT, for symbolic music generation, focusing on
generating musical continuations based on given contexts. We performed a modified
fine-tuning of a pre-trained MusicBERT model using different token unmasking
techniques, including Sequential Unmasking, Random Sampling, Parallel
Unmasking, and Causally Biased Iterative Decoding. We assessed each method for
coherence, diversity, and computational efficiency. Preliminary results showed that
Causally Biased Iterative Decoding performed best. The methods showed low GPU
VRAM utilization and rapid execution speeds, making such models promising for
real-time music composition.

​Εξερεύνηση μη αυτοπαλινδρομικών Μετασχηματιστών
για αποτελεσματική προσαρμοστική σύνθεση μουσικής

​ΠΕΡΙΛΗΨΗ

Σε αυτή τη μελέτη, διερευνούμε την εφαρμογή ενός μοντέλου που βασίζεται σε
Μετασχηματιστή με κωδικοποιητή, το MusicBERT, για συμβολική παραγωγή
μουσικής, εστιάζοντας στη δημιουργία μουσικών συνεχειών με βάση δεδομένο
περιεχόμενο. Κάναμε μια τροποποιημένη προσαρμογή ενός προεκπαιδευμένου
MusicBERT, χρησιμοποιώντας διαφορετικές τεχνικές συμπλήρωσης μάσκας, όπως
Διαδοχική, Τυχαία και Ταυτόχρονη Συμπλήρωση Μάσκας και Επαναληπτική
Αποκωδικοποίηση με αιτιώδη μεροληψία, και αξιολογήθηκαν ως προς τη συνοχή, την
ποικιλομορφία και την υπολογιστική απόδοση. Πρώιμα αποτελέσματα έδειξαν ότι η
επαναληπτική αποκωδικοποίηση με αιτιώδη μεροληψία είχε καλύτερη απόδοση. Οι
μέθοδοι είχαν χαμηλή χρήση VRAM και γρήγορες ταχύτητες εκτέλεσης, καθιστώντας
αυτά τα μοντέλα υποσχόμενα για σύνθεση μουσικής σε πραγματικό χρόνο.
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​Introduction

The adoption of artificial intelligence (AI) in music composition is
revolutionizing the process of music creation, providing innovative tools for
generating new musical ideas and improving arranging and mixing. Since the
mid-20th century, and increasingly with recent advances in deep learning, and the
availability of large amounts of data, AI has enabled automatic music composition
by leveraging large datasets. However, real-time music generation with low latency
remains a major challenge, particularly for applications like live performances and
dynamic soundtracks in video games or virtual reality (VR). Maintaining coherence
and expressiveness in AI-generated music is also important for preserving the
emotional impact and artistic quality expected by audiences.

Automated music composition has advanced since the early rule-based systems,
such as the Illiac Suite [10], and the probabilistic models like Markov chains. Neural
networks, particularly Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) [11], were transformative, enabling better handling of longer-term
dependencies in music data. Recently, more complex architectures, including
Generative Adversarial Networks (GANs) [9] and Transformer models [8], have
further transformed the field, with GANs using competing networks for realistic
outputs and Transformers surpassing RNNs in capturing long-range dependencies
[1][7]. These advancements, supported by greater computational power and access
to large, high-quality datasets, allow researchers in AI music to explore more
complex models, leading to deeper insights into music generation and improved
coherence and expressiveness in the results. However, these systems, particularly
Transformer-based ones, require large datasets and significant computational
resources for training, and the challenge of fast music generation still remains.

In this paper, we explore the use of non-autoregressive models for music
generation, specifically using MusicBERT [2], a Transformer encoder-based
architecture. We fine-tuned a pre-trained instance of the MusicBERT model in order
to adapt it for generating musical continuations. Given some input musical context,
we modified the standard Masked Language Modeling (MLM) task of predicting
sequences of tokens for generating musical continuations. Our approach aims to
leverage the model’s understanding of musical patterns and test various sampling
techniques to enhance output quality. This study explores whether
non-autoregressive methods can address the limitations of autoregressive models,
such as slow generation speeds, while maintaining coherence and creativity,
although the results remain preliminary.

1. Related Work

Transformer models have improved symbolic music generation by effectively
capturing long-range dependencies and managing the complicated structure of
musical compositions. Early approaches, such as the Music Transformer [7],
incorporated self-attention mechanisms to produce coherent melodies with
longer-term structure. Building on this foundation, models such as Compound Word
Transformer [1] improved control over multi-track compositions by integrating
hypergraph structures to more effectively represent the relationships between



Ακουστική 2024 AK24_XX

different musical elements. Additional advancements, like PopMAG [17] and Pop
Music Transformer [14], focus on multi-track representations and beat-based
modeling for improving the expressiveness and structure of generated music.
However, these transformer-based approaches primarily concentrate on
autoregressive methods, where each token is generated in a sequential manner. This
leads to longer inference times, especially for large compositions, and limits their
ability to handle specific infilling tasks or precise musical constraints.

More recently, non-autoregressive approaches have gained traction, particularly
in the domain of audio generation. Models like SoundStorm [13] and MAGNET
[15] employ parallel decoding strategies to efficiently generate high-quality audio.
However, these methods are primarily designed for continuous audio
representations, such as speech and sound synthesis, rather than symbolic music.
While non-autoregressive models offer faster generation, they often struggle with
producing long, coherent sequences and maintaining fidelity in complex musical
compositions, as observed in methods like VAMPNet [16] and StemGen [6].
Additionally, these approaches require training models from scratch, which can be
computationally expensive and harder to scale, especially for masked symbolic
music modeling tasks.

2. Methodology

In this section, we outline our approach for generating musical continuations
using MusicBERT, a pre-trained transformer model developed for symbolic music
understanding. We modified the fine-tuning process to adapt the model specifically
for generating continuation sequences given some musical context. We construct
pairs of data consisting of a context, which represents the musical input context, and
a continuation, which, as the name suggests, represents the continuation that comes
after the context. Our fine-tuning procedure extends the standard MLM task by
iteratively predicting tokens within a continuation. By experimenting with various
unmasking techniques, we aim to evaluate their effects on the model's ability to
maintain coherence, diversity, and computational efficiency during the generation
process.

2.1 Model Selection

For our experiments, we used MusicBERT, a transformer encoder-based model
pre-trained on symbolic music data. It follows the RoBERTa [4] architecture, using
attention mechanisms to capture both local and global patterns in the data.
MusicBERT has been pre-trained on large symbolic music datasets, enabling
learning a rich representation of musical structures such as harmony, rhythm, and
instrumentation. Its ability to handle long-range dependencies in sequential data
makes it an ideal choice for tasks involving symbolic music generation and analysis.
We pre-trained the model on the Masked Language Modeling (MLM) task [12],
masking certain tokens in a sequence and teaching it to predict the missing tokens
based on the surrounding context. This makes MusicBERT particularly useful for
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Figure 2.1 A flowchart illustrating the fine-tuning method, where the model receives
a concatenated context and masked continuation. The masked tokens are iteratively
unmasked and then evaluated against the target continuation using cross-entropy

loss. Parallel Unmasking generates the final continuation in one pass. The
OctupleMIDI encoding elements are displayed in the lower left.

generating symbolic music continuations, as it can model complex musical
dependencies across time.

2.2 Fine-tuning Process

To adapt MusicBERT for generating musical continuations, we fine-tuned the
model using a modification of the standard MLM technique, as shown in Figure 2.1.
In this process, the model receives two sequences as input: a context sequence that
contains unmasked tokens representing the initial musical input, and a masked
continuation sequence that the model must predict. The context is combined with the
masked continuation, and the model progressively unmasks the continuation by
predicting a subset of masked tokens in each iteration, which are then incorporated
back into the sequence. This iterative process is continued until all the masked
tokens are predicted. We experimented with several unmasking techniques
(described in Section 2.2) to evaluate their impact on the quality and coherence of
the generated music. For each technique, a different model variant was produced.

2.3 Dataset and Music Token Representation

For our fine-tuning musical corpus, we chose the POP909 [3] dataset, a
collection of 909 pop songs transcribed to MIDI format. We performed an 80-20
train-test split on the dataset, with 80% of it used for fine-tuning and the remaining
20% for testing. For each song, multiple context-continuation pairs of varying
lengths were constructed, ensuring that the model could potentially learn to generate
continuations given a variety of musical prompts. To encode the symbolic musical
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Figure 3.1 The three iterative unmasking methods for an initially masked
continuation sequence of 8 tokens (context sequence is not shown).

data, we used the OctupleMIDI [2] encoding, shown in Figure 2.1, which represents
each MIDI note as a tuple of eight elements: bar, position, instrument, pitch,
duration, velocity, time signature, and tempo. This method aligns with MusicBERT’s
pre-training data encoding, allowing the model to better utilize its knowledge more
effectively.

3. Experiments

3.1 Experimental Setup

The experiments were conducted using a single NVIDIA RTX 4060 GPU with
8GB of VRAM. For each method, we fine-tuned MusicBERT for 50 epochs. We set
the batch size to 64 and optimized the model using the Adam [5] optimizer with
β1=0.9, β2=0.98, and ε=1e-6. Additionally, we applied L2 weight decay of 0.1 to
prevent overfitting. The learning rate was linearly warmed up over the first 50,000
steps to a peak value of 5e-5, followed by a polynomial decay schedule throughout
the training process. A dropout rate of 0.1 was applied across all layers.

3.2 Sampling Techniques

During fine-tuning and evaluation, we experimented with four different
sampling techniques—three iterative and one non-iterative—to predict the masked
tokens in the continuation sequence by sampling from the model’s output logits. A
brief visualization of the three iterative methods is shown in Figure 3.1.

In Sequential Unmasking, tokens are predicted in a left-to-right manner. In each
iteration, the model predicts the leftmost masked token in the continuation part of
the input, which is then updated with the newly predicted token. This process
continues until all tokens in the continuation have been unmasked, while the context
remains unchanged throughout the iterations. In Random Sampling, tokens are
unmasked at random. The continuation is updated with these new tokens, and this
process is repeated until all masked tokens have been predicted. Parallel Unmasking
predicts the entire continuation sequence in one pass, without any iterative steps.
This method follows the same MLM procedure used when MusicBERT was
pre-trained. Lastly, we used a method similar to the Causally Biased Iterative
Decoding method, inspired by the StemGen [6], in which tokens
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Figure 4.1: Prediction times for different input lengths across each unmasking
method. The numbers shown on the x-axis represent the total number of notes in the
concatenated context-continuation pairs, while the actual input length is 8 times

larger due to the OctupleMIDI format.

earlier in the continuation sequence are prioritized for unmasking, creating a causal
structure in which earlier predictions influence subsequent ones. A ranking function
combines the model's confidence, a bias toward earlier tokens, and random noise to
potentially balance maintaining structure and having diversity in the generated
sequence.

For all methods, predictions were made by sampling from the top-k (k=5)
probabilities from the model’s output distribution. This top-k sampling limits the
selection of the next token to the k most likely candidates, promoting diversity while
reducing the risk of repetitive predictions.

4. Preliminary Results

We evaluated each sampling technique using random context-continuation pairs
from the test set. As shown in Figure 4.1, parallel unmasking maintains
near-constant execution time, while the other methods scale linearly with input
length. All techniques offer sub-second performance for inputs smaller than 200
tokens, making them ideal for continuous real-time generation. Even with larger
inputs, times up to 1.3s remain within a practical range for real-time applications.
Also, inference required only around 2GB of GPU memory, making these methods
accessible on consumer-grade GPUs.

However, all the methods showed significant flaws in the musical quality of the
generated continuations, most likely due to insufficient training. More specifically,
the most challenging sub-tokens to predict in the OctupleMIDI encoding were the
bar and position sub-tokens, which frequently lead the model to bad note placement
behavior, with notes either densely clustered or too sparse across bars. This tendency
of the model to place notes far apart was observed across all techniques, resulting in
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large pauses in the music. Additionally, in the Sequential Unmasking method, the
pitch sub-token was overly repetitive, reducing the output's diversity and
expressiveness. On the contrary, Random Sampling led to excessive prediction
variability, illustrating that relying too heavily on random selection degrades music
quality. The Causally Biased Iterative Decoding method, however, demonstrated a
better balance between structure and diversity. Although its performance was
initially poor during fine-tuning, it eventually achieved a more balanced output,
though still not entirely sufficient. Adjusting the factors in the ranking function
revealed a clear influence on the quality of the generated music, as expected. At last,
the Parallel Unmasking method showed the worst results, which we attribute to the
lack of iterative refinement.

In general, qualitative evaluations showed that the generated music maintained
the key of the input prompt, indicating that the methods captured some structural
aspects of the music. As training progressed, the differences between sampling
methods became more pronounced, with each method exhibiting distinct
characteristics in terms of coherence and variability.

5. Conclusion
​

In this study, we investigated the use of a non-autoregressive Transformer-based
model, MusicBERT, for symbolic music generation. Through fine-tuning the
pre-trained MusicBERT, we tested various sampling techniques to assess their
impact on generating musical continuations. While we achieved notable efficiency
in terms of low GPU VRAM usage and fast execution times, the generated
sequences revealed notable issues in musical quality, such as incorrect note
placement, large pauses, and variability in structure. The Causally Biased Iterative
Decoding method showed the most promise in balancing structure and diversity,
though further improvement is needed. Future work will focus on addressing these
challenges through extended training and evaluation. While the results are
preliminary, our approach demonstrates potential for efficient real-time music
generation in resource-constrained environments.
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